Agilent Technologies Network Analyzer 8510-58 Uživatelský manuál

Procházejte online nebo si stáhněte Uživatelský manuál pro Multimetry Agilent Technologies Network Analyzer 8510-58. Agilent Technologies Network Analyzer 8510-58 User's Manual Uživatelská příručka

  • Stažení
  • Přidat do mých příruček
  • Tisk
  • Strana
    / 32
  • Tabulka s obsahem
  • KNIHY
  • Hodnocené. / 5. Na základě hodnocení zákazníků
Zobrazit stránku 0
Agilent
Specifying Calibration
Standards for the Agilent 8510
Network Analyzer
Product Note 8510-5B
Zobrazit stránku 0
1 2 3 4 5 6 ... 31 32

Shrnutí obsahu

Strany 1 - Network Analyzer

Agilent Specifying Calibration Standards for the Agilent 8510 Network AnalyzerProduct Note 8510-5B

Strany 2 - Lower/minimum frequency

10It is not possible to remove fringing capacitance,but the resultant phase shift can be modeled as afunction of frequency using C0through C3(C0+Cl f

Strany 3 - Introduction

11NoteIn some cases (when the phase response is linearwith respect to frequency) the response of an opencan be modeled as an equivalent “incremental”l

Strany 4

The inductance as a function of frequency can bemodeled by specifying the coefficients of a third-order polynomial (L0+ L1 f + L2 f2+ L3 f3),with u

Strany 5

13The convention for definition of offset delay inwaveguide requires entry of the delay assuming nodispersion. For waveguide transmission line, theAgi

Strany 6

14µr= relative permeability constant of the medium(equal to 1.0 in air)εr= relative permittivity constant of the medium(equal to 1.000649 in air)D = i

Strany 7 - Modification procedure

15Therefore, for the WR-62 waveguide standard defi-nition table, offset loss of zero ohm/sec is enteredfor all four standards.Lower/minimum frequencyL

Strany 8 - Model for transmission

16Upper/maximum frequencyThis specifies the maximum frequency at whichthe standard is valid. In broadband applications, aset of banded standards may b

Strany 9

17NoteMathematical operations on measurements (anddisplayed data) after calibration are not correctedfor dispersion.Enter WAVEGUIDE into the standard

Strany 10

18S11A,B,C and S22A,B,CS11A, B,C and S22A,B,C correspond to the S11andS22reflection calibrations for port 1 and port 2respectively. These three classe

Strany 11

19TRL ThruTRL Thru corresponds to the measurement of theS-parameters of a zero-length or short thru connec-tion between port 1 and port 2. The Thru, R

Strany 12

233345577 8 9 9 911 12 12 12 14 14 15 16 16 17 17 17 18 18 18 18 19 19 19 19 19 20 20 20 21 21 22 22 22 23 23 26 29IntroductionMeasurement errors Meas

Strany 13

20Each adapter is specified as a single delay/thrustandard and up to seven standards numbers canbe specified into the adapter class.Standard Class lab

Strany 14 - 0 = = 59.9585

21Again, cal kit labels should be chosen to bestdescribe the calibration devices. The “B.1” defaultsuffix corresponds to the kit’s mechanical revision

Strany 15 - , the minimum fre

22User modified cal kits and Agilent 8510 specificationsAs noted previously, the resultant accuracy of the8510 when used with any calibration kit is d

Strany 16

23Appendix ACalibration kit entry procedureCalibration kit specifications can be entered intothe Agilent 8510 using the 8510 disk drive, a diskdrive c

Strany 17 - Assign classes

24Front panel procedure: (P-band waveguide example)1. Prior to modifying or generating a cal kit, storeone or both of the cal kits in the 8510’s non-v

Strany 18

254. Change the class label for S11A: LABEL CLASS,S11A, ERASE TITLE.5. Enter the label of PSHORT 1 by using the knob,the SELECT soft key and the SPACE

Strany 19 - 2 of the measured delay

26Appendix BDimensional considerations in coaxial connectorsThis appendix describes dimensional considera-tions and required conventions used in deter

Strany 20

27Female type-NMale type-N7 mm Coaxial connectorType-N coaxial connector interfaceThe location of the “calibration plane” in Type-N standards is the o

Strany 22 - Modification examples

29Appendix CCal coefficients modelOffset devices like offset shorts and offset opens canbe modeled by the following signal flow graph :Figure 1 Signal

Strany 23 - Appendix A

3IntroductionThis product note covers measurement calibrationrequirements for the Agilent 8510B/C networkanalyzer. All of the capabilities described i

Strany 24 - SPECIFY OFFSETS

30Their first order approximations, R is small and G=0, are:Equation 3Since Equation 4For coaxial devices

Strany 25

31then:Equation 5Equation 6If the Offset delay=0, then the coefficient of reflection,Γ = ΓL.

Strany 26 - Appendix B

Agilent Technologies’ Test and Measurement Support, Services, and AssistanceAgilent Technologies aims to maximize the value you receive,while minimizi

Strany 27

4The array coefficients are computed by measuringa set of “known” devices connected at a fixed pointand solving as the vector difference between themo

Strany 28

5Standard definitionStandard definition is the process of mathematical-ly modeling the electrical characteristics (delay,attenuation and impedance) of

Strany 29 - Loss, and Offset

6Table 1. Standard definitions tableTable 2. Standard class assignments

Strany 30 - Equation 4

7Modification procedureCalibration kit modification provides the capabilityto adapt to measurement calibrations in other con-nector types or to genera

Strany 31

8Define standardsA glossary of standard definition parameters usedwith the Agilent 8510 is included in this section.Each parameter is described and ap

Strany 32

9Each standard is described using the StandardDefinition Table in accordance with the 1- or 2-port model. The Standard Definition table for awaveguide

Komentáře k této Příručce

Žádné komentáře